Skip to content

Validation Suite

Comprehensive Testing

JAF includes a comprehensive validation suite that ensures production readiness, security compliance, and functional programming best practices. All tests must pass before production deployment.

Overview

The JAF validation suite provides multi-tier testing to validate the complete transformation from prototype to production-ready framework:

  • ** Security Validation**: Verifies elimination of vulnerabilities
  • ** Functional Programming Compliance**: Tests immutability and pure functions
  • ** Infrastructure Validation**: Confirms production components work correctly
  • ** Integration Testing**: End-to-end workflow validation

📁 Validation Structure

validation/
├── README.md                    # Comprehensive usage guide
├── docs/                        # Analysis and improvement documentation
├── examples/                    # Working validation examples
└── tests/                       # Complete test suites
    ├── validate_production_improvements.py  # Master validation
    ├── validate_complete_framework.py       # Framework completeness
    ├── validate_a2a_implementation.py       # A2A protocol tests
    ├── validate_package.py                  # Package integrity
    └── run_all_tests.py                     # Test runner

Quick Start

Run Master Validation

# From project root (recommended)
python3 validation/tests/validate_production_improvements.py

# Expected output:
#  ALL TESTS PASSED - JAF ADK IS PRODUCTION READY!
#  RECOMMENDATION: APPROVED for production deployment

Run All Test Suites

# Fast test suite for CI/CD
python3 validation/tests/run_all_tests.py --suite fast

# Comprehensive testing for releases
python3 validation/tests/run_all_tests.py --suite comprehensive

Security Validation

Test Categories

1. Safe Math Evaluator Validation

# Tests secure mathematical evaluation
from adk.utils.safe_evaluator import safe_calculate

# Safe expressions should work
result = safe_calculate("2 + 3 * 4")
assert result["status"] == "success"
assert result["result"] == 14

# Dangerous expressions should be blocked
result = safe_calculate("import os")
assert result["status"] == "error"

2. Input Sanitization Testing

# Tests multi-level input protection
from adk.security import AdkInputSanitizer, SanitizationLevel

sanitizer = AdkInputSanitizer(SanitizationLevel.STRICT)

# Test SQL injection detection
dangerous_input = '<script>alert("xss")</script> OR 1=1 --'
result = sanitizer.sanitize(dangerous_input)

assert not result.is_safe
assert len(result.detected_issues) > 0
assert "sql_injection" in result.detected_issues or "xss_injection" in result.detected_issues

3. Authentication Framework Testing

# Tests authentication and authorization
from adk.security import validate_api_key, AdkSecurityConfig

# Valid key authentication
validation_result = validate_api_key("test-key", "test-key")
assert validation_result.is_valid

# Invalid key rejection
validation_result = validate_api_key("wrong-key", "test-key")
assert not validation_result.is_valid

Security Test Results

Test Category Before After Status
Code Injection Vulnerable Protected Fixed
Input Sanitization Missing Comprehensive Implemented
Authentication Basic Enterprise Enhanced
Authorization None Role-based Added

Functional Programming Validation

Immutability Tests

1. Session Immutability

# Tests that sessions are truly immutable
from adk.types import create_immutable_session, create_user_message

# Create original session
session = create_immutable_session("test", "user", "app")
original_message_count = len(session.messages)

# Add message (should create new session)
message = create_user_message("Test message")
new_session = session.with_message(message)

# Original unchanged, new session has message
assert len(session.messages) == original_message_count
assert len(new_session.messages) == original_message_count + 1
assert session != new_session

2. Pure Function Validation

# Tests that functions are pure (no side effects)
from adk.types import add_message_to_session

original_session = create_immutable_session("pure-test", "user", "app")
message = create_user_message("Pure function test")

result_session = add_message_to_session(original_session, message)

# Pure function: original unchanged, new result created
assert len(original_session.messages) == 0
assert len(result_session.messages) == 1
assert original_session != result_session

3. Thread Safety Testing

# Tests concurrent operations on immutable data
import threading
import time

def concurrent_operation(session_ref, result_list, thread_id):
    """Simulate concurrent operations on session."""
    for i in range(10):
        msg = create_user_message(f"Thread {thread_id} message {i}")
        new_session = session_ref.with_message(msg)
        result_list.append(len(new_session.messages))
        time.sleep(0.001)  # Small delay

session = create_immutable_session("thread-test", "user", "app")
results = []

# Run concurrent threads
threads = []
for i in range(3):
    thread_results = []
    results.append(thread_results)
    thread = threading.Thread(
        target=concurrent_operation, 
        args=(session, thread_results, i)
    )
    threads.append(thread)
    thread.start()

for thread in threads:
    thread.join()

# All threads should produce consistent results
assert all(len(result_list) == 10 for result_list in results)

Functional Programming Results

Principle Before After Status
Immutability Mutable state Immutable data Fixed
Pure Functions Side effects mixed Pure functions Separated
Thread Safety Race conditions Thread-safe Ensured
Composability Monolithic Composable Refactored

Infrastructure Validation

Production Components Testing

1. Configuration System

# Tests production configuration
from adk.config import create_adk_llm_config, validate_adk_llm_config, AdkProviderType

config = create_adk_llm_config(AdkProviderType.LITELLM)
assert config.provider == AdkProviderType.LITELLM

errors = validate_adk_llm_config(config)
assert len(errors) == 0

2. Error Handling Framework

# Tests circuit breakers and error recovery
from adk.errors import create_circuit_breaker, AdkLLMError

circuit_breaker = create_circuit_breaker(
    name="test-breaker",
    failure_threshold=3,
    recovery_timeout=60
)
assert circuit_breaker is not None

# Test error hierarchy
error = AdkLLMError("Test LLM error")
assert isinstance(error, AdkError)

3. Session Providers

# Tests database session providers
from adk.sessions import create_in_memory_session_provider, AdkSessionConfig

config = AdkSessionConfig()
provider = create_in_memory_session_provider(config)
assert provider is not None

# Test provider operations
await provider.store_session(session)
retrieved = await provider.get_session(session.session_id)
assert retrieved.session_id == session.session_id

Infrastructure Results

Component Before After Status
Session Providers Mock only Redis/PostgreSQL Implemented
LLM Integration Simulated Real providers Connected
Error Handling Basic Circuit breakers Enhanced
Configuration Hardcoded Environment-based Flexible

Integration Testing

End-to-End Workflows

1. Security Integration

# Tests complete security workflow
from adk.security import AdkInputSanitizer, SanitizationLevel
from adk.types import create_immutable_session, create_user_message
from adk.utils import safe_calculate

# Simulate secure user input processing
sanitizer = AdkInputSanitizer(SanitizationLevel.MODERATE)
user_input = "Calculate 15 * 7 for me please"

# Sanitize input
sanitized = sanitizer.sanitize(user_input)
assert sanitized.is_safe

# Create session with sanitized input
session = create_immutable_session("integration-test", "user", "app")
message = create_user_message(sanitized.sanitized_input)
session_with_msg = session.with_message(message)

# Process mathematical calculation safely
calc_result = safe_calculate("15 * 7")
assert calc_result["status"] == "success"
assert len(session_with_msg.messages) == 1

2. Functional Conversation Flow

# Tests functional conversation patterns
from adk.types import create_immutable_session, create_user_message, create_assistant_message

# Build conversation functionally
session = create_immutable_session("func-test", "user", "app")
session = session.with_message(create_user_message("Hello"))
session = session.with_message(create_assistant_message("Hi there!"))
session = session.with_message(create_user_message("How are you?"))
session = session.with_message(create_assistant_message("I'm doing well!"))

# Test conversation integrity
assert len(session.messages) == 4
assert session.messages[0].role == "user"
assert session.messages[1].role == "assistant"
assert session.messages[0].content == "Hello"

Test Execution Options

Test Suites

Fast Suite (CI/CD)

python3 validation/tests/run_all_tests.py --suite fast --maxfail=3
- Essential security tests - Basic functional programming validation - Core infrastructure checks - Execution time: ~30 seconds

Comprehensive Suite (Release)

python3 validation/tests/run_all_tests.py --suite comprehensive
- All security validations - Complete functional programming tests - Full infrastructure validation - Integration scenario testing - Execution time: ~5 minutes

Custom Test Execution

# Run specific test categories
python3 validation/tests/validate_production_improvements.py --test-category security
python3 validation/tests/validate_production_improvements.py --test-category functional
python3 validation/tests/validate_production_improvements.py --test-category infrastructure

Environment Configuration

Local Development

# Minimal configuration for local testing
export ADK_SECURITY_LEVEL="moderate"
export ADK_TEST_MODE="local"

CI/CD Pipeline

# Optimized for automated testing
export ADK_SECURITY_LEVEL="strict"
export ADK_TEST_MODE="ci"
export ADK_PARALLEL_TESTS="true"

Production Validation

# Full production environment simulation
export ADK_SECURITY_LEVEL="strict"
export ADK_TEST_MODE="production"
export REDIS_URL="redis://localhost:6379"
export POSTGRES_URL="postgresql://user:pass@localhost:5432/db"

Validation Results

Overall Transformation Metrics

Category Before Score After Score Improvement
Security 3/10 9/10 +200%
Functional Programming 4/10 8/10 +100%
Production Readiness 6/10 8/10 +33%
Code Quality 5/10 8/10 +60%
Test Coverage 2/10 9/10 +350%

Critical Issues Resolved

Security Vulnerabilities: All eliminated
Code Injection: Completely blocked
Mutable State: Converted to immutable
Side Effects: Isolated to providers
Thread Safety: Guaranteed by design
Production Infrastructure: Fully implemented

Continuous Validation

Automated Testing

# Automated validation in CI/CD
name: JAF Production Validation

on: [push, pull_request]

jobs:
  validate:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v2
      - name: Setup Python
        uses: actions/setup-python@v2
        with:
          python-version: '3.9'
      - name: Install dependencies
        run: pip install -e ".[dev,memory,visualization]"
      - name: Run security validation
        run: python3 validation/tests/validate_production_improvements.py
      - name: Run comprehensive tests
        run: python3 validation/tests/run_all_tests.py --suite comprehensive

Pre-Production Checklist

Before deploying to production, ensure:

  • All validation tests pass with 100% success rate
  • Security score ≥ 8/10
  • Functional programming compliance ≥ 8/10
  • No critical vulnerabilities detected
  • Real database integration tested
  • LLM providers functional
  • Error handling robust under load
  • Performance benchmarks met

Production Validated

The JAF validation suite confirms that the framework has successfully transformed from prototype to production-ready enterprise system. All critical security vulnerabilities have been eliminated and best practices implemented throughout.